Блог
153 0

Самовоспламенение веществ и материалов. Температура самовоспламенения горючих веществ

Согласно тепловой теории, под температурой самовоспламенения понимают самую низкую температуру вещества (материала, смеси), при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающихся возникновением пламенного горения. На рис. 2.3 такой температурой является температура Т с, соответствующая точке В, в которой линия теплоотвода q 2 касается линии тепловыделения.

Измерение температуры Т с практически очень затруднено, что обусловлено большими скоростями изменения температуры смеси при ее самонагревании. Поэтому за температуру самовоспламенения принимают ту наименьшую температуру стенки сосуда или окружающей среды, при которой в данных условиях происходит самовоспламенение вещества, т.е. Т 0. Это не влечет за собой слишком большой ошибки.

Время с момента установления в горючем веществе температуры Т 0 до достижения температуры Т с называется периодом индукции или временем запаздывания самовоспламенения. Период индукции для одного и того же вещества неодинаков и сильно зависит от состава горючей смеси, температуры и давления. Чем ниже температура нагрева горючего вещества при самовоспламенении, тем больше период индукции. По

этому часто за температуру самовоспламенения принимают ту температуру окружающей среды или стенок сосуда, при которой период индукции самый большой.

Ниже показано изменение периода индукции смесей метана с воздухом в зависимости от их состава и температуры сосуда:

Период индукции, с

при 775 0 С ……………………………………………

при 825 0 С ……………………………………………

при 875 0 С ……………………………………………

При определении температуры самовоспламенения невозможно измерить период индукции, поэтому за период индукции принимают время с момента нагрева вещества до появления пламени. период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры). При попадании искры в горючую смесь паров или газов с воздухом некоторый объем смеси нагревается и в то же время охлаждается искра. Воспламенение смеси в этом случае зависит от соотношения периода индукции смеси и времени охлаждения искры. Если период индукции больше времени охлаждения искры до температуры, которая ниже температуры самовоспламенения, то воспламенение смеси не происходит. Если же период индукции меньше времени охлаждения искры, смесь воспламеняется. Таким образом, искра небольшой мощности может воспламенить смесь с малым периодом индукции и может не воспламенить смесь с большим периодом индукции.

Период индукции твердых веществ отличается от периода индукции газовых и пылевых смесей. Если период индукции для газовых смесей составляет десятки и сотни секунд, то период индукции для твердых горючих веществ может составлять часы, дни и месяцы. При температуре самовоспламенения вещества горение еще не возникает. Оно возникает и развивается при температуре горения (пламени), значительно превышающей температуру самовоспламенения. Например, температура самовоспламенения бензина 260 0 С, а температура его пламени 1200 – 1300 0 С. Скачок в подъеме температуры с 260 до 1200 0 С – результат самонагревания смеси паров бензина с воздухом.

Температура самовоспламенения горючего вещества не является постоянной величиной. Согласно тепловой теории самовоспламенения, эта температура зависит от скорости тепловыделения и скорости теплоотвода, которые, в свою очередь, зависят от объема горючего вещества, его концентрации, давления и других факторов.

В опытах по определению температуры самовоспламенения установлено, что она изменяется не только с изменением объема горючего вещества, но и от формы сосуда (тары), в котором вещество находится. Объясняется это тем, что с изменением формы или размера сосуда изменяется удельная поверхность теплоотвода S / V. В одинаковых по форме сосудах она тем меньше, чем больше объем сосуда. Следовательно, с увеличением объема сосуда скорость теплоотвода уменьшается и в соответствии с этим температура самовоспламенения должна понижаться. Приведенные ниже температуры самовоспламенения паров жидкостей в сосудах различного объема подтверждают это предположение:

Объем сосуда, л ………………..

Температура самовоспламе-

ацетона ………………………

бензола ………………………

бензина ………………………

диэтилового эфира …………..

керосина …………………….

метилового спирта …………..

сероуглерода ………………..

толуола ………………………

температура самовоспламенения при увеличении объема снижается до тех пор, пока объем не достигнет некоторого значения (форма сосуда не изменяется); при дальнейшем увеличении объема температура самовоспламенения остается постоянной.

Так, эксперимент показывает, что при объеме более 12 л температура самовоспламенения горючей смеси изменяется незначительно. Объясняется это тем, что в больших объемах горючая смесь самовоспламеняется не во всем объеме одновременно, а в части его, в которой создались наиболее оптимальные условия. Поэтому в малом объеме горючего вещества изменение теплоотвода через наружные поверхности влияет на изменение температуры самовоспламенения, а в большом объеме – нет.

Повышение температуры самовоспламенения горючего вещества при уменьшении объема также не бесконечно. При очень малом объеме удельная поверхность теплоотвода становится такой большой, что скорость выделения тепла за счет окисления горючей смеси даже при очень высоких температурах не может превысить скорость теплоотвода, и самовоспламенения не происходит. На этом принципе сконструированы и работают многие устройства, предназначенные для предотвращения распространения горения по газовым смесям (огнепреградители).

Простейшим огнепреградителем является защитная сетка, помещаемая в горючую газовую смесь, которая разбивается сеткой на мелкие объемы. При этом самовоспламенение произойти не может. Защитную сетку применяют в шахтерских лампах, а также в трубопроводах небольшого диаметра, по которым транспортируется смесь воздуха с парами нефтепродуктов. Защитную сетку нельзя применять для смесей воздуха с водородом, ацетиленом, парами сероуглерода, спиртами, эфирами и другими веществами, имеющими либо низкую температуру самовоспламенения, либо высокую теплоту сгорания. В таких условиях горящая смесь при прохождении через горящую сетку не охлаждается ниже температуры самовоспламенения и продолжает гореть за сеткой.

Большую удельную поверхность теплоотвода можно получить не только в результате уменьшения объема сосуда, но и приданием ему соответствующей формы. На рис. 2.4 изображены сосуды разной формы, которые вмещают одинаковые количества горючей смеси.

Рис. 2.4. Сосуды одинаковой емкости с разной скоростью теплоотвода

В первом сосуде (куб) (рис. 2.4, а ) при нагреве происходит самовоспламенение смеси, во втором, представляющем собой тонкую щель (рис. 2.4, б ), смесь не самовоспламеняется. Объясняется это тем, что второй сосуд имеет в несколько раз большую поверхность теплоотвода, чем первый.

Различие между возгоранием и самовозгоранием поясняются следующим образом. Представим, что образец твердого материала помещается в воздушный термостат, устанавливаемый на различные заданные температуры. На рис. 1.5 представлены получаемые в этих испытаниях развиваемые во времени в материале температуры. При весьма умеренном нагреве (кривая 1) в материале не происходят изменения. За время, определяемое разностью температур в термостате и окружающей среды, а также теплоемкостью и массой материала температура материала достигнет температуры термостата, а после отключения термостата материал вернется в начальное состояние. Такая картина будет наблюдаться при размещении материала в термостате и с более» высокой температурой до тех пор, пока не будет достигнута некоторая начальная температура самонагревания Тсн, при которой начнутся экзотермические превращения в_материале (разложение, окисление и

Температура самонагревания - самая низкая температура вещества, при которой в нем возникают практически различимые экзотермические процессы. Температуру самонагревания используют при выборе безопасных условий нагрева вещества. Безопасной температурой длительного нагрева вещества считают ту, которая не превышает 90% температуры самонагревания.

Примечание. К6 - коэффициент безопасности; КбВ - коэффициент к верхнему Пределу воспламенения; Кбз - коэффициент к энергии зажигания; К6н - коэффициент к нижнему пределу воспламенения; К6О - коэффициент к концентрации кислорода в смесях; К6с - коэффициент к температурам самовоспламенения, самонагревания, тления; Кбф ~ коэффициент к минимальной флегматизирующей концентрации инертного разбавителя в воздухе; КИ - кислородный индекс; КИД - допустимый кислородный индекс; ДЯ°Г - потенциал горючести 1 г-моль горючего вещества; ДЯ°ф - потенциал горючести 1 г-моль флегматизатора; t6i3 - безопасная температура, "С; *всп - температура вспышки, °С; (всп д - допустимая температура вспышки, "С; (с - минимальная температура среды, при которой наблюдается самовозгорание образца, °С; гсв - температура самовоспламенения, °С; tca - температура самонагревания, °С; trl[ - температура тления, °С; ""min ~ минимальная энергия зажигания, Дж; W6e3 - безопасная энергия зажигания, Дж; ^г - число молей горючего в смеси; Vф - число молей флегматизатора в смеси;Температуры самонагревания и тления. Температура самонагревания характеризует склонность ряда веществ и материалов к самовозгоранию, т. е. возникновению горения в результате самонагревания.

Температура самонагревания - самая низкая температура, при которой в веществе или материале, находящемся в атмосфере воздуха, возникают различные экзотермические процессы окисления, разложения и др.

Температура самонагревания - самая низкая температура вещества, нагревание до которой может привести к его самовозгоранию. Температуру самонагревания учитывают при определении условий безопасного длительного (или постоянного) нагрева вещества.

тем медленнее процесс горения. Температура при горении развивается до 1000° С. При длительном хранении в бунтах влажные семена самовозгораются. Температура при этом, как правило, не превышает 50-70° С, однако в отдельных случаях температура самонагревания достигает значительных величин и заканчивается загоранием семян. Самонагревание семян происходит за счет биологических и физико-химических процессов, активизированных повышенным содержанием влаги в семенах. Так, например, самонагревание низкомасленичных семян подсолнечника, содержащих 26-29% масла и имеющих влажность 18-30%, до опасных пределов не наблюдается. Однако семена подсолнечника, содержащие масла 40-44%, при влажности более 18% самовозгораются весьма интенсивно и нередко самовоспламеняются.

В статье рассмотрены методы определения пожаровзрывоопасных показателей углеродных порошков (диспергированных твердых веществ и материалов с частицами размером менее 850 мкм): группа горючести, температура воспламенения, нижний и верхний концентрационные пределы распространения пламени, температура самонагревания, температура тления, минимальная энергия зажигания, способность взрываться и гореть при взаимодействии с водой и кислородом воздуха, минимальное взрывоопасное содержание кислорода и минимальная флегматизирующая концентрация флегматизатора, максимальное давление взрыва и скорость нарастания давления при взрыве.

Температура самонагревания. Эксперименты проводили в течение 1 месяца одновременно в четырех воздушных термостатах вместимостью по 4 дм3, отрегулированных на 60, 80, 100 и 120°С. За температуру самонагревания исследуемых образцов №1-5 была принята наиболее низкая температура в сушильном шкафу - 80°С, при которой в образцах возникали практически различимые экзотермические процессы окисления и разложения (см. таблицу).

Температура самонагревания, °С 80 80 80 80 80

Температура самонагревания - - 4- +2) в результате самонагревания будет достигнута температура самовозгорания Тсв, начиная с которой произойдет спонтанный рост скорости реакции и температуры и обязательно возникнет горение (кривая 3).

Температура вспышки - минимальная температура горючего вещества, при которой над его поверхностью образуются газы и пары, способные вспыхивать (вспыхивать - быстро сгорать без образования сжатых газов) в воздухе от источника зажигания (горящего или раскаленного тела, а также электрического разряда, обладающих запасом энергии и температурой, достаточными для возникновения горения вещества). Температура самовозгорания -самая низкая температура, при которой происходит резкое увеличение скорости экзотермической реакции (при отсутствии источника зажигания), заканчивающееся пламенным горением. Концентрационные пределы воспламенения - минимальная (нижний предел) и максимальная (верхний предел) концентрации, которые характеризуют области воспламенения.

Пресспорошок - горючий материал; его пыль образует с воздухом смеси, нижний предел воспламенения которых составляет 10- 50 т/и3; температура самовозгорания 655-900 °С.

Для образца с линейным размером 15 мм плотностью 0,7 г-см-3 критическая температура самовозгорания на 6-7 град, ниже, чем для образца плотностью 0,4 г-см-3. Дальнейшее увеличение плотности приводит к снижению активности самовозгорания. В опытах Г. П. Сапрыгина и Я. С. Киселева образец (15 мм) при плотности 1,0г-см~3 не загорался вплоть до 495 К, тогда как образцы с плотностью 0,6 - 0,7 г-см-3 имели критическую температуру самовозгорания ниже 467 К. Эти эксперименты показали влияние интенсивности поступления кислорода на условия самовозгорания. При небольшом уплотнении продукта, когда экзотермический процесс лимитируется кинетическими факторами, с увеличением плотности активность самовозгорания растет. При больших уплотнениях образца кислорода, содержащегося в его объеме, оказывается недостаточно для поддержания максимальной скорости окисления. Поскольку при этих условиях затруднен приток кислорода извне, экзотермический процесс тормозится.

Самовозгоранием считается повышение температуры образца до 400 - 500 °С. Временем до самовозгорания считают промежуток от момента выравнивания показаний термопар до начала резкого подъема температуры в образце. Время до самовозгорания определяют с точностью до 0,05 г. В течение всего опыта температура воздуха в термостате не должна изменяться более чем на 2,5 град. После фиксации явных признаков горения или после окончания выдержки образца при отсутствии самовозгорания термостат выключают. Следующие испытания проводят в зависимости от результатов первого испытания при температуре на 10 - 20 град ниже или выше температуры первого испытания. Эти опыты повторяют до тех пор, пока не будут найдены две температуры среды, отличающиеся на 5 град, при одной из которых наблюдается самовозгорание образца, а при другой - отказ. Среднюю арифметическую этих значений, округленную до 1 град, принимают за температуру самовозгорания образца данных размеров. Опыты начинают с образцов меньших размеров. Для обработки экспериментальных данных в логарифмических координатах «температура самовозгорания - удельная поверхность» и «температура самовозгорания - время до самовозгорания» строят соответствующие зависимости.

В зависимости от внутреннего импульса процессы самовозгорания делятся на химические, микробиологические и тепловые. Химическое самовозгорание от воздействия на вещества кислорода воздуха, воды или от взаимодействия веществ. Часто пожары возникают вследствие самовозгорания промасленных тряпок, спецодежды, ваты и даже металлических стружек. О склонности масла или жира ко самовозгоранию можно судить по его йодному числу. Йодным числом называется количество йода в граммах, поглощенное 100 г испытываемого масла или жира. Чем выше йодное число, тем ниже температура самовозгорания.

температура самовозгорания

77 /27 /77 221 ZV 327 Температура самовозгорания, °с

В зависимости от характера возникновения процесс горения называют возгоранием или самовозгоранием. Различие между ними видно из приводимой ниже схемы (где t^ - температура источника нагрева; ti - температура самонагревания; ti - температура самовозгорания, самовоспламенения):

Температура самовозгорания, "С

К числу температурных показателей пожарной опасности пылей, подлежащих определению, относятся температура воспламенения, температура самовозгорания (тления и самовоспламенения) и температура самонагревания (см. гл. 2).

Для инциирования реакций горения нужны условия воспламенения смеси топлива с окислителем. Воспламенение может быть самопроизвольным и вынужденным (зажигание).

Температура самовоспламенения - минимальная температура, при которой в нагретой газовоздушной смеси начинается самопроизвольный (т.е. без внешнего подвода теплоты) процесс горения, за счет выделения теплоты горящими частицами газа.Температура самовоспламенения не является фиксированной для данного газа и зависит от многих параметров: его содержания в газовоздушной смеси, степени однородности смеси, формы и размеров сосуда, в котором смесь нагревается, быстроты и способа ее нагрева, каталитического влияния стенок сосуда, давления, под которым находится смесь. Точный учет перечисленных факторов весьма сложен, поэтому на практике, например, при оценке взрывоопасности, пользуются экспериментальными данными (см. табл. 8.10).

Температуры самовоспламенения горючих газов в кислороде несколько ниже, чем в воздухе. Введение в состав газов балластных примесей (азота и диоксида углерода) приводит к увеличению температуры самовоспламенения. Присутствие в сложных газах компонентов с низкой температурой самовоспламенения приводит к снижению температуры самовоспламенения смеси.

Вынужденное воспламенение (зажигание) осуществляется поджиганием смеси в одной или в ряде точек высокотемпературным источником - открытым пламенем или электрической искрой в точке вылета газа из огневых каналов горелок в топочный объем. Зажигание отличается от самовоспламенения тем, что горючую смесь доводят до появления пламени не во всем объеме, а только в небольшой части его. Теплоотвод из нагреваемой зоны требует, чтобы интенсивность тепловыделения источника зажигания превышала этот отвод теплоты. После воспламенения источник зажигания удаляется, и горение происходит за счет распространения фронта пламени.

Таблица 8.10. Наименьшие измеренные температуры самовоспламенения некоторых газов и паров в смеси с воздухом при атмосферном давлении

Правильная организация противопожарных мероприятий и тушения пожаров невозможна без понимания сущности химических и физических процессов, которые происходят при горении. Знание этих процессов дает возможность успешно бороться с огнем.

Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Окислителем в процессе горения может быть кислород, а также хлор, бром и другие вещества.

В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха. Этот вид окислителя и принят в дальнейшем изложении. Горение возможно при наличии вещества, способного гореть, кислорода (воздуха) и источника зажигания. При этом необходимо, чтобы горючее вещество и кислород находились в определенных количественных соотношениях, а источник зажигания имел необходимый запас тепловой энергии.

Известно, что в воздухе содержится около 21% кислорода. Горение большинства веществ становится невозможным, когда содержание кислорода в воздухе понижается до 14-18%, и только некоторые горючие вещества (водород, этилен, ацетилен и др.) могут гореть при содержании кислорода в воздухе до 10% и менее. При дальнейшем уменьшении содержания кислорода горение большинства веществ прекращается.

Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему, а источник зажигания вызывает в ней реакцию горения. Источником зажигания может быть горящее пли накаленное тело, а также электрический разряд, обладающий запасом энергии, достаточным для возникновения горения и др.

Горючие системы подразделяются на однородные и неоднородные. Однородными являются системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом (смеси горючих газов, паров с воздухом). Горение таких систем называют горением кинетическим. Скорость его определяется скоростью химической реакции, значительной при высокой температуре. При определенных условиях такое горение может носить характер взрыва или детонации. Неоднородными являются системы, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела (твердые горючие материалы и нераспыленные жидкости). В процессе горения неоднородных горючих систем кислород воздуха проникает (диффундирует) сквозь продукты горения к горючему веществу и вступает с ним в реакцию. Такое горение называют диффузионным горением, так как его скорость определяется главным образом сравнительно медленно протекающим процессом-диффузией.

Для возгорания тепло источника зажигания должно быть достаточным для превращения горючих веществ в пары и газы и для нагрева их до температуры самовоспламенения. По соотношению горючего и окислителя различают процессы горения бедных и богатых горючих смесей. Бедные смеси содержат в избытке окислитель и имеют недостаток горючего компонента. Богатые смеси, наоборот, имеют в избытке горючий компонент и в недостатке окислитель.

Возникновение горения связано с обязательным самоускорением реакции в системе. Процесс самоускорения реакции окисления с переходом ее в горение называется самовоспламенением. Самоускорение химической реакции при горении подразделяется на три основных вида: тепловой, цепной и комбинированный - цепочечно-тепловой. По тепловой теории процесс самовоспламенения объясняется активизацией процесса окисления с возрастанием скорости химической реакции. По цепной теории процесс самовоспламенения объясняется разветвлением цепей химической реакции. Практически процессы горения осуществляются преимущественно по комбинированному цепочечно-тепловому механизму.

Сгорание различают полное и неполное. При полном сгорании образуются продукты, которые неспособны больше гореть: углекислый газ, сернистый газ, пары воды. Неполное сгорание происходит, когда к зоне горения затруднен доступ кислорода воздуха, в результате чего образуются продукты неполного сгорания: окись углерода, спирты, альдегиды и др.

Ориентировочно количество воздуха (м 3), необходимое для сгорания 1 кг вещества (или 1 м 3 газа),

где Q - теплота сгорания, кДж/кг, или кДж/м 3.

Теплота сгорания некоторых веществ: бензина-47 000 кДж/кг; древесины воздушно-сухой -14 600 кДж/кг; ацетилена - 54400 кДж/м 3 ; метана - 39400 кДж/м 3 ; окиси углерода - 12600 кДж/м 3.

По теплоте сгорания горючего вещества можно определить, какое количество тепла выделяется при его сгорании, температуру горения, давление при взрыве в замкнутом объеме и другие данные.

Температура горения вещества определяется как теоретическая, так и действительная. Теоретической называется температура горения, до которой нагреваются продукты сгорания, в предположении, что все тепло, выделяющееся при горении, идет на их нагревание.

Теоретическая температура горения

где m - количество продуктов горения, образующихся при сгорании 1 кг вещества; с - теплоемкость продуктов горения, кДж/ (кг*К); θ - температура воздуха, К; Q - теплота сгорания, кДж/кг.

Действительная температура горения на 30-50% ниже теоретической, так как значительная часть тепла, выделяющегося при горении, рассеивается в окружающую среду.

Высокая температура горения способствует распространению пожара, при ней большое количество тепла излучается в окружающую среду, и идет интенсивная подготовка горючих веществ к горению. Тушение пожара при высокой температуре горения затрудняется.

При рассмотрении процессов горения следует различать следующие его виды: вспышка, возгорание, воспламенение, самовоспламенение, самовозгорание, взрыв.

Вспышка - это быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Возгораемость - способность возгораться (воспламеняться) под воздействием источника зажигания.

Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения веществ (материала, смеси) при отсутствии источника зажигания.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени.

Взрывом называется чрезвычайно быстрое химическое (взрывчатое) превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Необходимо понимать различие между процессами возгорания (воспламенения) и самовозгорания (самовоспламенения). Для того чтобы возникло воспламенение, необходимо внести в горючую систему тепловой импульс, имеющий температуру, превышающую температуру самовоспламенения вещества. Возникновение же горения при температурах ниже температуры самовоспламенения относят к процессу самовозгорания (самовоспламенения).

Горение при этом возникает без внесения источника зажигания - за счет теплового или микробиологического самовозгорания.

Тепловое самовозгорание вещества возникает в результате самонагревания под воздействием скрытого или внешнего источника нагрева. Самовоспламенение возможно только в том случае, если количество тепла, выделяемого в процессе самоокисления, будет превышать отдачу тепла в окружающую среду.

Микробиологическое самовозгорание возникает в результате самонагревания под воздействием жизнедеятельности микроорганизмов в массе вещества (материала, смеси). Температура самовоспламенения является важной характеристикой горючего вещества.

Температура самовоспламенения - это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Температуры самовоспламенения некоторых жидкостей, газов и твердых веществ, имеющих применение в машиностроительной промышленности, приведены в табл. 28.

Таблица 28 Температуры самовоспламенения некоторых жидкостей

ВеществоТемпература самовоспламенения, °С

Фосфор белый

20

Сероуглерод

112

Целлулоид

140-180

Сероводород

246

Масла нефтяные

250-400
250

Бензин А-76

255
380-420

Каменный уголь

400

Ацетилен

406

Этиловый спирт

421

Древесный уголь

450

Нитробензол

482
530
612
625

Окись углерода

644
700

Помимо температуры самовоспламенения, горючие вещества характеризуются периодом индукции или временем запаздывания самовоспламенения. Периодом индукции называют промежуток времени,

в течение которого происходит саморазогревание до воспламенения. Период индукции для одного и того же горючего вещества неодинаков и находится в зависимости от состава смеси, начальных температуры и давления.

Период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры). Искра, попадая в горючую смесь паров или газов с воздухом, нагревает некоторый объем смеси, и в то же время происходит охлаждение искры. Воспламенение смеси зависит от соотношения периода индукции смеси и времени охлаждения искры. При этом, если период индукции больше времени охлаждения искры, то воспламенения смеси не произойдет.

Период индукции принят в основу классификации газовых смесей по степени их опасности в отношении воспламенения. Период индукции пылевых смесей зависит от размера пылинок, количества летучих веществ, влажности и других факторов.

Некоторые вещества могут самовозгораться, находясь при обычной температуре. Это в основном твердые пористые вещества большей частью органического происхождения (опилки, торф, ископаемый уголь и др.). Склонны к самовозгоранию и масла, распределенные тонким слоем по большой поверхности. Этим обусловлена возможность самовозгорания промасленной ветоши. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла кислородом воздуха сопровождается выделением тепла. В случае, когда количество образующегося тепла превышает теплопотери в окружающую среду, возможно возникновение пожара.

Пожарная опасность веществ, склонных к самовозгоранию, очень велика, поскольку они могут загораться без всякого подвода тепла при температуре окружающей среды ниже температуры самовоспламенения веществ, а период индукции самовозгорающихся веществ может составлять несколько часов, дней и даже месяцев. Начавшийся процесс ускорения окисления (разогревания вещества) можно остановить лишь при обнаружении опасного нарастания температуры, что указывает на большое значение пожарно-профилактических мероприятий.

На машиностроительных предприятиях применяются многие вещества, способные к самовозгоранию. Самовозгораться при взаимодействии с воздухом могут сульфиды железа, сажа, алюминиевая и цинковая пудра и др. Самовозгораться при взаимодействии с водой могут щелочные металлы, карбиды металлов и др. Карбид кальция (СаС 2), реагируя с водой, образует ацетилен (С 2 Н 2).

Cамую низкую температуру вещества (материала, смеси), при которой происходит резкое увеличение скорости экзотермических реакций, заканчи-вающихся возникновением пламенного горения, называюттемпературой самовоспламенения.На рис. 12 такой температурой является температура Т с, соответствующая точке В, в которой линия теплоотвода q 2 касается линии тепловыделения q 1 ". Затемпературу самовоспламененияпринимают ту наименьшую температуру стенки сосуда или окружающей среды, при которой в данных условиях происходит самовоспламенение вещества, т. е. Т 0.

Время с момента установления в горючем веществе температуры Т 0 до достижения температуры Т с называется периодом индукции или временем запаздывания самовоспламенения. Период индукции для одного и того же вещества неодинаков и сильно зависит от состава горючей смеси, температуры и давления. Чем ниже температура нагрева горючего вещества при самовоспламенении, тем больше период индукции. Поэтому часто за температуру самовоспламенения принимают ту температуру окружающей среды или стенок сосуда, при которой период индукции самый большой.

За период индукции принимают время с момента нагрева веществадо появления пламени. Период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры).

Температура самовоспламенения горючего вещества не является постоянной величиной. Эта температура зависит от скорости тепловыделения и скорости теплоотвода, которые в свою очередь зависят от объема горючего вещества, его концентрации, давления и других факторов.

Она изменяется не только с изменением объема горючего вещества, но и от формы сосуда (тары), в котором вещество находится. Объясняется это тем, что с изменением формы или размера сосуда изменяется удельная поверхность теплоотвода S/V. В одинаковых по форме сосудах она тем меньше, чем больше объем сосуда. Следовательно, с увеличениемобъема сосуда скорость теплоотвода уменьшается и в соответствии с этим температура самовоспламенения должна понижаться. При очень малом объеме удельная поверхность теплоотвода становится такой большой, что скорость выделения тепла за счет окисления горючей смеси даже при очень высоких температурах не может превысить скорость теплоотвода, и самовоспламенения не происходит. На этом принципе сконструированы и работают многие устройства, предназначенные для предотвращения распространения горения по газовым смесям (огнепреградители).

Простейшим огнепреградителем является защитная сетка, помещаемая в горючую газовую смесь, которая разбивается сеткой на мелкие объемы. При этом самовоспламенения произойти не может.

Температура самовоспламенения смесей горючих паров и газов с воздухом изменяется в зависимости от их состава. Самая низкая температура самовоспламенения у стехиометрической смеси или смеси, близкой к ней.

Температура самовоспламенения горючих смесей зависит от давления. Чем выше давление, тем ниже температура самовоспламенения.

Температура самовоспламенения горючей смеси уменьшается при повышении давления, что обусловлено увеличением скорости реакции.

Очень большое влияние на температуру самовоспламенения жидкостей и газов оказывают катализаторы. Каталитическими свойствами могут обладать даже стенки сосуда (тары и т. д.), в котором находится горючая смесь, или же нагретые поверхности твердого тела, являющегося источником воспламенения. Катализаторы могут быть также введены в само горючее вещество.

Температура самовоспламенения твердых веществ зависит от степени их измельчения. Чем больше измельчено твердое вещество, тем ниже температура его самовоспламенения.

Для определения температуры самовоспламенения горючих газов и жидкостей разработано много методов. Наиболее распространенным из них является метод капли. Метод капли применяют для определения температуры самовоспламенения жидкостей и легкоплавких твердых веществ. В нагретый до определенной температуры сосуд вводят по каплям горючую жидкость. Татемпература сосуда, при которой произойдет самовоспламенение жидкости, является ее температурой самовоспламенения. Для определения стандартной температуры самовоспламенения паров жидкостей по этому методуразработан стандартный прибор.

Температуру самовоспламенения твердых неплавкихвеществ и материалов определяют на приборе ВНИИПО.

Термин «температура самовоспламенения» для твердых неплавких веществ и материалов является условным, так как некоторые из них (кокс, древесный уголь, графит, сернистое железо, некоторые металлы) горят без образования пламени (в виде каления или накала). Другие неплавкие материалы (древесина, торф, бумага) при нагревании разлагаются с выделением горючих продуктов, сгорающих с образованием пламени, и угля, сгорающего в виде накала или тления.

Добавить комментарий